of example, the light scattering coating 234 may be a paint, film or spray coating. In addition, the light scattering texture 236 may be a molded surface of the wall or a sandblasted surface of the wall. As shown, when light 218 is made incident on the inner surface 220, it intersects the light scattering coating 234 or texture applied on the inner surface 220 of the wall 216. After intersecting the light scattering coating 234 or the light scattering texture 236, the light 218 is scattered outwards in a plurality of directions, i.e., the light is reflected off the surface and/or refracted through the light scattering particle thereby creating the characteristic glow 228.

[0091] Although not shown, in another embodiment, the thickness of the wall may be altered so as to produce a light scattering effect. It is generally believed that the greater the thickness, the greater the light scattering effect.

[0092] FIG. 15 is a perspective diagram of a computer system 240, in accordance with another embodiment of the present invention. By way of example, the computer system 240 may generally correspond to the computer 150 of FIG. 9. The desktop computer system 240 generally includes an illuminable housing 242 that is illuminated with light from a light source 244 disposed therein. The illuminable housing 242 generally includes a translucent or semi-translucent wall 246 configured to allow the passage of light. For ease of discussion, a portion of the wall 246 has been removed to show the light source 244 disposed therein. The light source 244 is generally configured to generate light 248 so as to illuminate an edge of the wall 246 of the illuminable housing 242. That is, the light 248 emitted by the light source 244 is made incident on an inner edge 250 of the wall 246. The light is then directed through the wall 246 (length wise) to an outer edge 252 of the wall 246 where it produces a light effect 254 that alters the visual appearance of the wall 246 and thus the visual appearance of the computer system 240. In essence, the wall 246 acts like a light pipe that is configured for transferring or transporting light. Light pipes are generally well known in the art.

[0093] To facilitate discussion, FIG. 16 is a top view, in cross section, of the computer system 240 shown in FIG. 14, in accordance with one embodiment of the invention. As shown, the light source 244 consists of a plurality of light emitting diodes 256 (LED's) that are disposed at various positions inside the illuminable housing 242. The LED's 256 may be a single LED or an LED array. The LED's 256 may be positioned in various directions so long as the light 248 is made incident on the inner edge 250 of the wall 246. For example, the axis of the LED's 256 may be pointing directly at the inner edge 250 or they may be pointing at an angle relative to the inner edge 250. Furthermore, the wall 246 is configured to transmit the light 248 therethrough from the inner edge 250 to the outer edge 252 to produce the light effect 254 that emanates from the outer edge 252 of the wall 246. By way of example, the wall 246 may be formed from a translucent or semi-translucent plastic such as polycarbonate, acrylic and the like. In some cases, the wall 246 may include light directing portions 258, 259 that cause the light to reflect back and forth until it exits the outer edge 252.

[0094] FIG. 17 is a perspective diagram of a computer system 260, in accordance with another embodiment of the present invention. By way of example, the computer system 260 may generally correspond to the computers 150, 210

and 240 of FIGS. 9, 12 and 15, respectively. The desktop computer system 260 generally includes an illuminable housing 262 that is illuminated with light from a light source 264 disposed therein. The illuminable housing 262 generally includes a translucent or semi-translucent wall 266 configured to allow the passage of light. For ease of discussion, a portion of the wall 266 has been removed to show the light source 264 disposed therein. The light source 264 is generally configured to generate light 268 so as to illuminate both a surface and an edge of the wall 266 of the illuminable housing 262. That is, the light 268 emitted by the light source 264 is made incident on an inner surface 270 and/or an inner edge 272 of the wall 266. The light is then directed through the wall 266 to an outer surface 274 and an outer edge 276 of the wall 266 where it produces a light effect 278A and 278B that alters the visual appearance of the wall 266 and thus the visual appearance of the computer system

[0095] In one embodiment, the light 268 emitted by the light source 264 is made incident on both the inner edge 272 and inner surface 270 of the wall 266 via a plurality of LED's or LED arrays. Referring to FIG. 18A, for example, the light source 264 includes at least a first LED 279 and a second LED 280. The first LED 279 is configured to generate a first light 282 so as to illuminate a surface of the wall 266 of the illuminable housing 262 and the second LED 280 is configured to generate a second light 284 so as to illuminate an edge of the wall 266 of the illuminable housing 262. With regards to the first LED 278, the first light 282 is first made incident on the inner surface 270 of the wall 266 and then it is directed through the wall 266 (width wise) to the outer surface 274 of the wall 266 where it produces the light effect 278A. With regards to the second LED 280, the second light 284 is first made incident on the inner edge 272 of the wall 266 and then it is directed through the wall 266 (length wise) to an outer edge 276 of the wall 266 where it produces the light effect 278B. As should be appreciated, the light effect 278A alters the visual appearance of the surface of the wall 266, while light effect 278B alters the visual appearance of the edge of the wall 266.

[0096] In another embodiment, the light 268 emitted by the light source 264 is made incident on both the inner edge 272 and the inner surface 270 of the wall 266 via an offset LED. Referring to FIG. 18B, for example, the light source 264 includes an LED 290 that is offset relative to the wall 266 and that generates light 292 so as to illuminate a surface and an edge of the wall 266 of the illuminable housing 262. That is, the light 292 emitted by the LED 290 is made incident on both the inner surface 270 and the inner edge 272 of the wall 266. As such, a first portion of the light 290 is directed through the wall 266 (width wise) to the outer surface 274 of the wall 266 where it produces the light effect 278A that alters the visual appearance of the surface of the wall 266. In addition, a second portion of the light 290 is directed through the wall 266 (length wise) to the outer edge 276 of the wall 266 where it produces a light effect 278B that alters the visual appearance of the edge of the wall 266.

[0097] In another embodiment, the wall 266 includes light scattering particles and the light 268 emitted by the light source 264 is made incident on the inner edge 276 via an LED. Referring to FIG. 18C, for example, the wall 266 includes a plurality of light scattering particles 294 disposed between the inner and outer surfaces 270, 274 and the inner